Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope
نویسندگان
چکیده
A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10-5 deg/√h.
منابع مشابه
Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application
In this paper, we propose a small-diameter polarization-maintaining solid-core photonic crystal fiber. The coating diameter, cladding diameter and other key parameters relating to the thermal properties were studied. Based on the optimized parameters, a fiber with a Shupe constant 15% lower than commercial photonic crystal fibers (PCFs) was fabricated, and the transmission loss was lower than 2...
متن کاملSensitivity Enhancement of Ring Laser Gyroscope Using Dielectric-Graphene Photonic Crystal
In a ring laser gyroscope, due to the rotation and the Sagnac effect, a phase difference between the two counter-propagating beams is generated. In this device, the higher phase difference between these two beams causes the better the interference pattern detection, and thus the sensitivity is increased. In this paper, the effect of inserting a dielectric-graphene photonic crystal inside a ring...
متن کاملThermal Effects Study on Stimulated Brillouin Light Scattering in Photonic Crystal Fiber
we investigate the temperature-dependences of the Brillouin frequency shift in three different kind of single-mode fibers using a heterodyne method for sensing temperature. Positive dependences coefficients of 0.77, 0.56 and 1.45MHz/0C are demonstrated for 25 km long single-mode fiber, 10 km long non-zero dispersion shifted fiber and 100 m photonic crystal fiber, respectively. The results indic...
متن کاملMeasurement of reduced backscattering noise in laser-driven fiber optic gyroscopes.
We report what we believe to be the first demonstration of a laser-driven fiber optic gyroscope (FOG) built with an air-core fiber. Its phase noise is measured to be 130 murad/ radicalHz. When the sensing fiber is replaced with a conventional fiber, this figure drops to 12 murad/ radicalHz. Comparison between these values suggests that the air-core fiber gyro is most likely not limited solely b...
متن کاملDesigning a dual-core photonic crystal fiber coupler by means of microfluidic infiltration
We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by...
متن کامل